Efficiency Improvement of WCDMA Base Station Transmitters using Class-F power amplifiers

dc.contributor.authorVenkataramani, Muthuswamyen
dc.contributor.committeechairBostian, Charles W.en
dc.contributor.committeememberSweeney, Dennis G.en
dc.contributor.committeememberRaman, Sanjayen
dc.contributor.departmentElectrical and Computer Engineeringen
dc.date.accessioned2011-08-06T16:01:28Zen
dc.date.adate2004-05-11en
dc.date.available2011-08-06T16:01:28Zen
dc.date.issued2004-04-30en
dc.date.rdate2004-05-11en
dc.date.sdate2004-05-06en
dc.description.abstractUniversal Mobile Telecommunications Systems (UMTS) is the preferred third generation (3G) communication standard for mobile communications and will provide worldwide coverage, a convenient software technology and very high data rate. The high data rate, especially, requires the use of bandwidth-efficient modulation schemes such as Quadrature Phase Shift Keying (QPSK). But modulation schemes such as QPSK need, in turn, a very linear power from the output of the transmitter power amplifier in order to meet the spectral requirements. A linear power amplifier, traditionally, has very low energy efficiency. Poor energy efficiency directly affects operational costs and causes thermal heating issues in base station transmitters. Thus the power amplifier designer is forced to trade-off between linearity and efficiency. As a result of this trade-off a Class-AB power amplifier is most often used in QPSK based systems. Class-AB power amplifiers provide acceptable linearity at efficiency values around 45-50% typically. This compromise is not a satisfactory solution but is inevitable while using traditional power amplifier design techniques. This thesis details the use of a Class-F amplifier with carefully chosen bias points and harmonic traps to overcome this problem. Class-F amplifiers are usually considered as very high efficiency (80% or more power-added efficiency) amplifiers where the high efficiency is obtained through the use of harmonic traps (L-C filters or quarter-wavelength transmission lines), which provide suitable terminations (either open or short) for the harmonics generated. By doing this, a square wave drain voltage and a peaked half-sinusoidal drain current out-of-phase by 180 are produced. Since only a drain voltage or a drain current exists at any given time, the power dissipation is ideally zero resulting in 100% theoretical efficiency. These very high efficiency values are usually associated with poor linearity. However the linearity can be improved to meet the design standards but compromising on efficiency. Even after this is done, efficiencies are usually 10 to 15% greater than a traditional Class AB power amplifier with similar linearity performance. Thus efficiency can be improved without affecting linearity by the use of Class-F power amplifiers. In order to verify this theory, a Class-AB and a Class-F power amplifier are designed using Motorola's high voltage laterally diffused metal oxide semiconductor (LDMOS) transistor. The choice of bias points and the design of the harmonic traps are very critical for the Class-F performance and hence were designed after careful consideration. The designs were simulated on Agilent's Advanced Design System (ADS) and the simulated results were compared for three different power levels namely, the peak power, 3 dB below peak power and 6 dB below peak power. At all of these power levels it was noted that the Class-F and Class-AB power amplifiers have very similar linearity performance whereas the Class-F power amplifiers show about 10% improvement in efficiency in comparison to the Class-AB power amplifiers.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.otheretd-05062004-142557en
dc.identifier.sourceurlhttp://scholar.lib.vt.edu/theses/available/etd-05062004-142557en
dc.identifier.urihttp://hdl.handle.net/10919/9900en
dc.publisherVirginia Techen
dc.relation.haspartVenkataramani_Thesis.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectlinearityen
dc.subjectharmonic balanceen
dc.subjectIntermodulation distortionen
dc.subjectpower added efficiencyen
dc.subjectpower amplifieren
dc.subjectclass-ABen
dc.subjectclass-Fen
dc.subjectWCDMAen
dc.titleEfficiency Improvement of WCDMA Base Station Transmitters using Class-F power amplifiersen
dc.typeThesisen
thesis.degree.disciplineElectrical and Computer Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Venkataramani_Thesis.pdf
Size:
917.85 KB
Format:
Adobe Portable Document Format
Collections