Modeling Underwater Explosion (UNDEX) Shock Effects for Vulnerability Assessment in Early Stage Ship Design
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This thesis describes and assesses a simplified tool for modeling underwater explosion shock effects during early naval ship concept design. A simplified fluid model using Taylor flat-plate theory is incorporated directly into the OpenFSI module code in Nastran and used to interface with the structural solver in Nastran to simulate a far-field shockwave impacting the hull. The kick-off velocities and the shock spectra captured in this computationally efficient module is compared to results from a high-fidelity CASE (Cavitating Acoustic Spectral Element) fluid model implemented with the ABAQUS/Nastran structural solver to validate the simplified framework and assess the sufficiency of this very simple but, fast approach for early stage ship design.