Terrain Aided Navigation for Autonomous Underwater Vehicles with Local Gaussian Processes

TR Number



Journal Title

Journal ISSN

Volume Title


Virginia Tech


Navigation of autonomous underwater vehicles (AUVs) in the subsea environment is particularly challenging due to the unavailability of GPS because of rapid attenuation of electromagnetic waves in water. As a result, the AUV requires alternative methods for position estimation. This thesis describes a terrain-aided navigation approach for an AUV where, with the help of a prior depth map, the AUV localizes itself using altitude measurements from a multibeam DVL. The AUV simultaneously builds a probabilistic depth map of the seafloor as it moves to unmapped locations.

The main contribution of this thesis is a new, scalable, and on-line terrain-aided navigation solution for AUVs which does not require the assistance of a support surface vessel. Simulation results on synthetic data and experimental results from AUV field trials in Panama City, Florida are also presented.



Autonomous Underwater Vehicles, Navigation, Gaussian Processes