A scheduling framework for dynamically resizable parallel applications
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Applications in science and engineering require large parallel systems in order to solve computational problems within a reasonable timeframe. These applications can benefit from dynamic resizing during the course of their execution. Dynamic resizing enables fine-grained control over resource allocation to jobs and results in better system throughput and job turn around time. We have implemented a framework that enabled dynamic resizing of MPI applications. Our framework uses the recently released MPI-2 standard that enables dynamic resizing. The work described in this thesis is part of a larger effort to design and implement a system for supporting and leveraging dynamically resizable parallel applications. We provide a scheduling framework, an API for dynamic resizing and libraries to efficiently redistribute data to new processor topologies.