Understanding the Impact of a Serrated Trailing Edge on the Unsteady Hydrodynamic Field

dc.contributor.authorLetica, Stefan Josipen
dc.contributor.committeechairAlexander, William Nathanen
dc.contributor.committeememberDevenport, William J.en
dc.contributor.committeememberLowe, K. Todden
dc.contributor.departmentAerospace and Ocean Engineeringen
dc.date.accessioned2020-09-16T08:00:37Zen
dc.date.available2020-09-16T08:00:37Zen
dc.date.issued2020-09-15en
dc.description.abstractTrailing edge noise is a common noise source in aerodynamic applications, such as wind turbines, duct fan blades, and propellers. As sound is a nuisance for people near this machinery, methods of reducing trailing edge noise are being investigated. A proven method of trailing edge noise reduction is using a serrated trailing edge. Many prior experiments have shown that a trailing edge with sawtooth serrations can reduce trailing edge noise compared to a straight trailing edge, but the mechanism by which sawtooth serrations reduce noise is not fully understood. Previous theoretical models have assumed that the turbulence field convecting past a serrated trailing edge is unchanged by the presence of the serrations, but experiments have shown that this is not the case in reality. This work attempts to further explore the mechanisms behind why trailing edge serrations reduce trailing edge noise. Additionally, it evaluates the usefulness of a wall jet wind tunnel for use in the study of serrated trailing edges. Experiments were conducted in an anechoic wall jet wind tunnel using a straight trailing edge configuration and a serrated trailing edge configuration. It was found that there may be differences in the unsteady surface pressure over serrated edges in one-sided flows as compared to two-sided flows, like on that of an airfoil, most notably in relation to the magnitude of the unsteady pressure on the serrations. In the wall jet and in agreement with other studies, it was found that the unsteady pressure fluctuations increase towards the tip of the serration in one-sided flows. This is counter to what is found in some studies of two-sided flows. Good agreement was found between some models of the wavenumber-frequency wall pressure spectrum of a turbulent boundary layer and the measured wall pressure spectrum on the straight trailing edge, and these models also produced good predictions of the noise produced by this trailing edge using Amiet's equation. A surface pressure microphone array was used to estimate the zero spanwise wavenumber surface pressure spectrum. This spectrum was used in Amiet's method to predict the measured trailing edge noise. Predictions using the wavenumber-filtered measurement tended to overpredict the measured far field noise most likely due to the inclusion of broader wavenumber content through the array's side lobe response and the breadth of the main lobe. The serrated trailing edge was found to increase coherence between two points on the same serration while reducing coherence between two points on different serrations. It was concluded that the presence of the serrations decorrelates small-scale turbulent eddies. Additionally, it was found that while the serrated trailing edge did reduce the noise produced, its destructive effect on the geometry-based resonance of the straight trailing edge configuration may have amplified the magnitude of the reduction. Finally, it was concluded that the serrations do indeed affect the hydrodynamic field near the trailing edge, and the theoretical models which make the assumption otherwise must be refined.en
dc.description.abstractgeneralTrailing edge noise is a common noise source in aerodynamic applications, such as wind turbines, duct fan blades, and propellers. As sound is a nuisance for people near this machinery, methods of reducing trailing edge noise are being investigated. A proven method of trailing edge noise reduction is using a serrated trailing edge. Many prior experiments have shown that a trailing edge with sawtooth serrations can reduce trailing edge noise compared to a straight trailing edge, but the mechanism by which sawtooth serrations reduce noise is not fully understood. This work attempts to further explore the mechanisms behind why trailing edge serrations reduce noise. Experiments were conducted in an anechoic wind tunnel facility. It was found that a one-sided flow over a serrated trailing edge may be significantly different from that over a two-sided flow. Good agreement was found between prediction models and measurements of trailing edge noise. The serrated trailing edge was effective at reducing the coherence of turbulent eddies across the roots of the sawtooth serrations. It was concluded that the serrated trailing edge is effective at reducing noise, and that one means of doing so is decreasing the correlation of small-scale turbulent eddies, and that current models of the flow over serrations may need to be refined.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:27587en
dc.identifier.urihttp://hdl.handle.net/10919/99965en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjecttrailing edge noiseen
dc.subjectaeroacousticsen
dc.subjectserrationsen
dc.subjectturbulent boundary layersen
dc.subjectwall jeten
dc.titleUnderstanding the Impact of a Serrated Trailing Edge on the Unsteady Hydrodynamic Fielden
dc.typeThesisen
thesis.degree.disciplineAerospace Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Letica_SJ_T_2020.pdf
Size:
29.2 MB
Format:
Adobe Portable Document Format

Collections