Scale invariance and dynamic phase transitions in diffusion-limited reactions

dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentPhysicsen
dc.contributor.editorKramer, B.en
dc.coverage.spatialDRESDEN, GERMANYen
dc.date.accessioned2016-09-30T13:04:06Zen
dc.date.available2016-09-30T13:04:06Zen
dc.date.issued2003-01-01en
dc.description.abstractMany systems that can be described in terms of diffusion-limited ‘chemical’ reactions display non-equilibrium continuous transitions separating active from inactive, absorbing states, where stochastic fluctuations cease entirely. Their critical properties can be analyzed via a path-integral representation of the corresponding classical master equation, and the dynamical renormalization group. An overview over the ensuing universality classes in single-species processes is given, and generalizations to reactions with multiple particle species are discussed as well. The generic case is represented by the processes A ⇀↽ A+A, and A → ∅, which map onto Reggeon field theory with the critical exponents of directed percolation (DP). For branching and annihilating random walks (BARW) A → (m + 1)A and A + A → ∅, the mean-field rate equation predicts an active state only. Yet BARW with odd m display a DP transition for d ≤ 2. For even offspring number m, the particle number parity is conserved locally. Below d’<sub>c</sub> ≈ 4/3, this leads to the emergence of an inactive phase that is characterized by the power laws of the pair annihilation process. The critical exponents at the transition are those of the ‘parity-conserving’ (PC) universality class. For local processes without memory, competing pair or triplet annihilation and fission reactions kA → (k − l)A, kA → (k + m)A with k = 2, 3 appear to yield the only other universality classes not described by mean-field theory. In these reactions, site occupation number restrictions play a crucial role.en
dc.description.versionPublished versionen
dc.format.extent659 - 675 (17) page(s)en
dc.format.mimetypeapplication/pdfen
dc.identifier.issn1438-4329en
dc.identifier.urihttp://hdl.handle.net/10919/73103en
dc.identifier.volume43en
dc.language.isoenen
dc.publisherSpringer-Verlag Berlinen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000188787700047&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysics, Condensed Matteren
dc.subjectPhysicsen
dc.subjectANNIHILATING RANDOM-WALKSen
dc.subjectRENORMALIZED FIELD-THEORYen
dc.subjectKINETIC ISING-MODELSen
dc.subjectDIRECTED PERCOLATIONen
dc.subjectCRITICAL-BEHAVIORen
dc.subjectQUENCHED DISORDERen
dc.subjectFISSION PROCESSen
dc.subjectGRIBOV PROCESSen
dc.subjectEXTINCTIONen
dc.subjectDRIVENen
dc.titleScale invariance and dynamic phase transitions in diffusion-limited reactionsen
dc.title.serialAdvances in Solid State Physicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten
dc.type.otherProceedings Paperen
dc.type.otherMeetingen
dc.type.otherBooks in seriesen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0304065v1.pdf
Size:
273.5 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: