Fe3 +-saturated montmorillonite effectively deactivates bacteria in wastewater

Files

TR Number

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Existing water disinfection practices often produce harmful disinfection byproducts. The antibacterial activity of Fe3 +-saturated montmorillonite was investigated mechanistically using municipal wastewater effluents. Bacterial deactivation efficiency (bacteria viability loss) was 92 ± 0.64% when a secondary wastewater effluent was mixed with Fe3 +-saturated montmorillonite for 30 min, and further enhanced to 97 ± 0.61% after 4 h. This deactivation efficiency was similar to that when the same effluent was UV-disinfected before it exited a wastewater treatment plant. Comparing to the secondary wastewater effluent, the bacteria deactivation efficiency was lower when the primary wastewater effluent was exposed to the same dose of Fe3 +-saturated montmorillonite, reaching 29 ± 18% at 30 min and 76 ± 1.7% at 4 h. Higher than 90% bacterial deactivation efficiency was achieved when the ratio between wastewater bacteria population and weight of Fe3 +-saturated montmorillonite was at < 2 × 103 CFU/mg. Furthermore, 99.6–99.9% of total coliforms, E. coli, and enterococci in a secondary wastewater effluent was deactivated when the water was exposed to Fe3 +-saturated montmorillonite for 1 h. Bacterial colony count results coupled with the live/dead fluorescent staining assay observation suggested that Fe3 +-saturated montmorillonite deactivated bacteria in wastewater through two possible stages: electrostatic sorption of bacterial cells to the surfaces of Fe3 +-saturated montmorillonite, followed by bacterial deactivation due to mineral surface-catalyzed bacterial cell membrane disruption by the surface sorbed Fe3 +. Freeze-drying the recycled Fe3 +-saturated montmorillonite after each usage resulted in 82 ± 0.51% bacterial deactivation efficiency even after its fourth consecutive use. This study demonstrated the promising potential of Fe3 +-saturated montmorillonite to be used in applications from small scale point-of-use drinking water treatment devices to large scale drinking and wastewater treatment facilities.

Description

Keywords

Citation