Multiparameter BCn-Kostka-Foulkes Polynomials
dc.contributor.author | Goodberry, Benjamin Nathaniel | en |
dc.contributor.committeechair | Orr, Daniel D. | en |
dc.contributor.committeemember | Loehr, Nicholas A. | en |
dc.contributor.committeemember | Shimozono, Mark M. | en |
dc.contributor.department | Mathematics | en |
dc.date.accessioned | 2018-06-20T08:02:42Z | en |
dc.date.available | 2018-06-20T08:02:42Z | en |
dc.date.issued | 2018-06-19 | en |
dc.description.abstract | The Kostka-Foulkes polynomials describe the change of basis between Schur polynomials and Hall-Littlewood polynomials. In this paper, we extend this idea to the family of BCn Macdonald spherical functions, with multiparameter Kostka-Foulkes polynomials acting as the change of basis from the BC_n spherical functions to the type Cn Schur polynomials. We develop a Kato-Lusztig formula that describes the multiparameter BCn-Kostka-Foulkes polynomials. | en |
dc.description.abstractgeneral | The work done in [11] gives a formula to calculate Kostka-Foulkes polynomials that convert between two other forms of polynomials. However, this only applies in specific instances. In this paper, we generalize those ideas to allow for more parameters, and find that a similar formula still holds. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:15656 | en |
dc.identifier.uri | http://hdl.handle.net/10919/83576 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Hall-Littlewood Polynomials | en |
dc.subject | Kostka-Foulkes Polynomials | en |
dc.subject | Algebraic Combinatorics | en |
dc.title | Multiparameter BCn-Kostka-Foulkes Polynomials | en |
dc.type | Thesis | en |
thesis.degree.discipline | Mathematics | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1