Realization of a Measuring Device for Recordning the Relative Movement between Residual Limb and Prosthetic Socket

dc.contributor.authorWhitmore, Sigrid Ilonaen
dc.contributor.committeechairAsbeck, Alan T.en
dc.contributor.committeechairRinderknecht, Stephanen
dc.contributor.committeememberHardt, Steffenen
dc.contributor.committeememberBohn, Jan Helgeen
dc.contributor.departmentMechanical Engineeringen
dc.date.accessioned2018-08-03T08:00:46Zen
dc.date.available2018-08-03T08:00:46Zen
dc.date.issued2018-08-02en
dc.description.abstractRelative motion between residual limb and prosthetic socket is an indication of poor fit. Both the fabrication and fitting processes are highly subjective and a favorable result depends upon the technician's expertise. Although numerous methods exist to measure the relative motion, all have limitations and are not well suited for clinical use. A measurement system using optical sensors has been proposed by students at the Technische Universität Darmstadt and evaluations of a functional model have yielded promising results. In this thesis, the existing functional model is improved and expanded to use an array of sensors. A new microcontroller is selected and incorporated into the system. The software and data communication are optimized for fast, reliable performance and the system is then evaluated on a test rig to determine favorable calibration settings and quantify performance. System frequencies up to 1299 Hz are achieved. It is found that the surface microstructure has a dominant effect over short measurement distances; calibrations performed over longer distances are to be preferred. For the chosen calibration factors, the greatest relative errors over a 40 mm distance are found to be 0.90% ± 0.51% in the X direction and -4.76% ± 1.61% in the Y-direction. A systematic drift is also identified. The final system accommodates up to eight sensors and is controlled from a feature-rich MATLAB GUI.en
dc.description.abstractgeneralIn lower limb prosthetics, the amount of relative motion between the prosthesis and residual limb is considered an indicator of the quality of fit. As existing methods for measuring this motion are generally difficult to use, a simpler system is desired. The task for this master's thesis is to develop an existing functional model into a measurement system with multiple sensors and validate its performance. The first step is to upgrade the microcontroller responsible for reading the sensor data and transmitting it to the PC. The original codes for both the microcontroller and PC-side Graphical User Interface (GUI) are then examined and optimized for maximum speed. The system is expanded to accommodate multiple sensors and its performance evaluated using a test-rig. Finally, the completed system is prepared for use in a future study by creating the appropriate component housings, wiring, and software functionalities.en
dc.description.degreeMaster of Scienceen
dc.format.mediumETDen
dc.identifier.othervt_gsexam:16593en
dc.identifier.urihttp://hdl.handle.net/10919/84478en
dc.publisherVirginia Techen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPistoningen
dc.subjectLower Limb Prosthesisen
dc.subjectOptical Sensoren
dc.subjectMeasuring Deviceen
dc.titleRealization of a Measuring Device for Recordning the Relative Movement between Residual Limb and Prosthetic Socketen
dc.typeThesisen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen
thesis.degree.levelmastersen
thesis.degree.nameMaster of Scienceen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Whitmore_SI_T_2018.pdf
Size:
122.74 KB
Format:
Adobe Portable Document Format

Collections