A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face of global change
dc.contributor.author | Carey, Cayelan C. | en |
dc.contributor.author | Calder, Ryan S. D. | en |
dc.contributor.author | Figueiredo, Renato J. | en |
dc.contributor.author | Gramacy, Robert B. | en |
dc.contributor.author | Lofton, Mary E. | en |
dc.contributor.author | Schreiber, Madeline E. | en |
dc.contributor.author | Thomas, R. Quinn | en |
dc.date.accessioned | 2025-02-19T18:12:13Z | en |
dc.date.available | 2025-02-19T18:12:13Z | en |
dc.date.issued | 2024-09-20 | en |
dc.description.abstract | Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management. | en |
dc.description.version | Published version | en |
dc.format.extent | Pages 475-487 | en |
dc.format.extent | 13 page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.1007/s13280-024-02076-7 | en |
dc.identifier.eissn | 1654-7209 | en |
dc.identifier.issn | 0044-7447 | en |
dc.identifier.issue | 3 | en |
dc.identifier.orcid | Thomas, Robert [0000-0003-1282-7825] | en |
dc.identifier.orcid | Carey, Cayelan [0000-0001-8835-4476] | en |
dc.identifier.orcid | Schreiber, Madeline [0000-0002-1858-7730] | en |
dc.identifier.orcid | Gramacy, Robert [0000-0001-9308-3615] | en |
dc.identifier.orcid | Calder, Ryan [0000-0001-5618-9840] | en |
dc.identifier.other | PMC11780027 | en |
dc.identifier.other | 10.1007/s13280-024-02076-7 (PII) | en |
dc.identifier.pmid | 39302615 | en |
dc.identifier.uri | https://hdl.handle.net/10919/124655 | en |
dc.identifier.volume | 54 | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/39302615 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Cyanobacteria | en |
dc.subject | Cyberinfrastructure | en |
dc.subject | Decision support | en |
dc.subject | Forecast | en |
dc.subject | Phytoplankton bloom | en |
dc.subject | Water management | en |
dc.subject.mesh | Phytoplankton | en |
dc.subject.mesh | Environmental Monitoring | en |
dc.subject.mesh | Forecasting | en |
dc.subject.mesh | Climate Change | en |
dc.subject.mesh | Lakes | en |
dc.subject.mesh | Water Quality | en |
dc.title | A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face of global change | en |
dc.title.serial | Ambio | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
dcterms.dateAccepted | 2024-09-05 | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Natural Resources & Environment | en |
pubs.organisational-group | Virginia Tech/Natural Resources & Environment/Forest Resources and Environmental Conservation | en |
pubs.organisational-group | Virginia Tech/Science | en |
pubs.organisational-group | Virginia Tech/Science/Biological Sciences | en |
pubs.organisational-group | Virginia Tech/Science/Geosciences | en |
pubs.organisational-group | Virginia Tech/Science/Statistics | en |
pubs.organisational-group | Virginia Tech/Veterinary Medicine | en |
pubs.organisational-group | Virginia Tech/Veterinary Medicine/Population Health Sciences | en |
pubs.organisational-group | Virginia Tech/Faculty of Health Sciences | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Natural Resources & Environment/CNRE T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Science/COS T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Veterinary Medicine/CVM T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Post-docs | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A framework for developing a real-time lake phytoplankton forecasting system to support water quality management in the face.pdf
- Size:
- 611.86 KB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version
License bundle
1 - 1 of 1