Nucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equation

dc.contributor.authorLiu, Weigangen
dc.contributor.authorTäuber, Uwe C.en
dc.contributor.departmentCenter for Soft Matter and Biological Physicsen
dc.contributor.departmentPhysicsen
dc.date.accessioned2019-12-29T14:43:43Zen
dc.date.available2019-12-29T14:43:43Zen
dc.date.issued2019-11-20en
dc.date.updated2019-12-29T14:43:40Zen
dc.description.abstractWe numerically investigate nucleation processes in the transient dynamics of the two-dimensional complex Ginzburg-Landau equation toward its "frozen" state with quasistationary spiral structures. We study the transition kinetics from either the defect turbulence regime or random initial configurations to the frozen state with a well-defined low density of quasistationary topological defects. Nucleation events of spiral structures are monitored using the characteristic length between the emerging shock fronts. We study two distinct situations, namely when the system is quenched either far from the transition limit or near it. In the former deeply quenched case, the average nucleation time for different system sizes is measured over many independent realizations. We employ an extrapolation method as well as a phenomenological formula to account for and eliminate finite-size effects. The nonzero (dimensionless) barrier for the nucleation of single spiral droplets in the extrapolated infinite system size limit suggests that the transition to the frozen state is discontinuous. We also investigate the nucleation of spirals for systems that are quenched close to but beyond the crossover limit and of target waves which emerge if a specific spatial inhomogeneity is introduced. In either of these cases, we observe long, "fat" tails in the distribution of nucleation times, which also supports a discontinuous transition scenario.en
dc.description.notes16 pages, 9 figuresen
dc.description.versionPublished versionen
dc.format.extent15 page(s)en
dc.identifierARTN 052210 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.100.052210en
dc.identifier.eissn2470-0053en
dc.identifier.issn2470-0045en
dc.identifier.issue5en
dc.identifier.orcidTauber, Uwe [0000-0001-7854-2254]en
dc.identifier.urihttp://hdl.handle.net/10919/96231en
dc.identifier.volume100en
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relation.urihttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000498061600005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1en
dc.relation.urihttps://doi.org/10.1103/PhysRevE.100.052210en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectPhysical Sciencesen
dc.subjectPhysics, Fluids & Plasmasen
dc.subjectPhysics, Mathematicalen
dc.subjectPhysicsen
dc.subjectSPIRAL WAVE DYNAMICSen
dc.subjectTRAVELING-WAVESen
dc.subjectECKHAUS INSTABILITYen
dc.subjectSTABILITY LIMITSen
dc.subjectTRANSITIONen
dc.subjectCHAOSen
dc.subjectPROPAGATIONen
dc.subjectPATTERNSen
dc.subjectMOTIONen
dc.subjectSTATESen
dc.subjectcond-mat.stat-mechen
dc.titleNucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equationen
dc.title.serialPhysical Review Een
dc.typeArticle - Refereeden
dc.type.otherArticleen
dc.type.otherJournalen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Techen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.100.052210.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Published version