A Comparison of Image Classification with Different Activation Functions in Balanced and Unbalanced Datasets
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
When the novel coronavirus (COVID-19) outbreak began to ring alarm bells worldwide, rapid, efficient diagnosis was critical to the emergency response. The limited ability of medical systems and the increasing number of daily cases pushed researchers to investigate automated models. The use of deep neural networks to help doctors make the correct diagnosis has dramatically reduced the pressure on the healthcare system. Promoting the improvement of diagnosis networks depends not only on the network structure design but also on the activation function performance. To identify an optimal activation function, this study investigates the correlation between the activation function selection and image classification performance in balanced or imbalanced datasets. Our analysis evaluates various network architectures for both commonly used and novel datasets and presents a comprehensive analysis of ten widely used activation functions. The experimental results show that the swish and softplus functions enhance the classification ability of state-of-the-art networks. Finally, this thesis distinguishes the neural networks using ten activation functions, analyzes their pros and cons, and puts forward detailed suggestions on choosing appropriate activation functions in future work.