DynamicPrint: A physics-guided feedforward model predictive process control approach for defect mitigation in laser powder bed fusion additive manufacturing
dc.contributor.author | Riensche, Alex | en |
dc.contributor.author | Bevans, Benjamin | en |
dc.contributor.author | Carrington Jr, Antonio | en |
dc.contributor.author | Deshmukh, Kaustubh | en |
dc.contributor.author | Shephard, Kamden | en |
dc.contributor.author | Sions, John | en |
dc.contributor.author | Synder, Kyle | en |
dc.contributor.author | Plotnikov, Yuri | en |
dc.contributor.author | Cole, Kevin | en |
dc.contributor.author | Rao, Prahalada | en |
dc.date.accessioned | 2025-02-18T13:01:11Z | en |
dc.date.available | 2025-02-18T13:01:11Z | en |
dc.date.issued | 2025-01-05 | en |
dc.description.abstract | In this work, we developed and applied a physics-guided autonomous feedforward model predictive process control approach called DynamicPrint to mitigate part defects in laser powder bed fusion (LPBF) additive manufacturing. Currently, the processing parameters for LPBF of a specific material are optimized through empirical testing of simple-shaped coupons. These optimized parameters are typically maintained constant when printing complex parts. However, using constant parameters often causes uneven temperature distribution in complex parts, leading to such defects as inhomogeneous microstructure, poor surface finish, thermal-induced distortion, and build failures. By contrast, DynamicPrint autonomously adjusts the processing parameters layer-by-layer before an LPBF part is printed to prevent non-uniform temperature distribution and mitigate thermal-induced defects. The a priori process parameter adjustments in DynamicPrint are guided by rapid physics-based thermal simulations. Through experiments with complex stainless steel 316 L LPBF parts, we demonstrate the following beneficial outcomes of DynamicPrint: (i) homogenous grain sizes and consistent properties (microhardness); (ii) improved geometric accuracy and surface integrity of hard-to-access internal features; and (iii) avoidance of recoater crashes and elimination of supports in parts with prominent overhang features. DynamicPrint can greatly accelerate the time-to-market for LPBF parts by offering a rapid, physics-based method for process qualification, unlike the current cumbersome and expensive empirical build-and-test approach. | en |
dc.description.version | Accepted version | en |
dc.format.extent | 23 page(s) | en |
dc.identifier | ARTN 104592 (Article number) | en |
dc.identifier.doi | https://doi.org/10.1016/j.addma.2024.104592 | en |
dc.identifier.eissn | 2214-7810 | en |
dc.identifier.issn | 2214-8604 | en |
dc.identifier.orcid | Rao, Prahalada [0000-0002-9642-622X] | en |
dc.identifier.uri | https://hdl.handle.net/10919/124614 | en |
dc.identifier.volume | 97 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Laser powder bed fusion (LPBF) | en |
dc.subject | Thermal history | en |
dc.subject | Physics-based feedforward process control | en |
dc.subject | Model predictive control | en |
dc.title | DynamicPrint: A physics-guided feedforward model predictive process control approach for defect mitigation in laser powder bed fusion additive manufacturing | en |
dc.title.serial | Additive Manufacturing | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
dc.type.other | Article | en |
dc.type.other | Journal | en |
pubs.organisational-group | Virginia Tech | en |
pubs.organisational-group | Virginia Tech/Engineering | en |
pubs.organisational-group | Virginia Tech/Engineering/Industrial and Systems Engineering | en |
pubs.organisational-group | Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | Virginia Tech/Engineering/COE T&R Faculty | en |