Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds
dc.contributor.author | Redekar, Neelam R. | en |
dc.contributor.author | Pilot, Guillaume | en |
dc.contributor.author | Raboy, Victor | en |
dc.contributor.author | Li, S. | en |
dc.contributor.author | Saghai-Maroof, Mohammad A. | en |
dc.contributor.department | School of Plant and Environmental Sciences | en |
dc.date.accessioned | 2018-01-15T15:57:51Z | en |
dc.date.available | 2018-01-15T15:57:51Z | en |
dc.date.issued | 2017-11-30 | en |
dc.description.abstract | A dominant loss of function mutation in myo-inositol phosphate synthase (MIPS) gene and recessive loss of function mutations in two multidrug resistant protein type-ABC transporter genes not only reduce the seed phytic acid levels in soybean, but also affect the pathways associated with seed development, ultimately resulting in low emergence. To understand the regulatory mechanisms and identify key genes that intervene in the seed development process in low phytic acid crops, we performed computational inference of gene regulatory networks in low and normal phytic acid soybeans using a time course transcriptomic data and multiple network inference algorithms. We identified a set of putative candidate transcription factors and their regulatory interactions with genes that have functions in myo-inositol biosynthesis, auxin-ABA signaling, and seed dormancy. We evaluated the performance of our unsupervised network inference method by comparing the predicted regulatory network with published regulatory interactions in Arabidopsis. Some contrasting regulatory interactions were observed in low phytic acid mutants compared to non-mutant lines. These findings provide important hypotheses on expression regulation of myo-inositol metabolism and phytohormone signaling in developing low phytic acid soybeans. The computational pipeline used for unsupervised network learning in this study is provided as open source software and is freely available at https://lilabatvt.github.io/LPANetwork/. | en |
dc.description.version | Published version | en |
dc.format.extent | ? - ? (14) page(s) | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | https://doi.org/10.3389/fpls.2017.02029 | en |
dc.identifier.issn | 1664-462X | en |
dc.identifier.orcid | Pilot, G [0000-0001-7520-1059] | en |
dc.identifier.orcid | Li, S [0000-0002-8133-3944] | en |
dc.identifier.uri | http://hdl.handle.net/10919/81782 | en |
dc.identifier.volume | 8 | en |
dc.language.iso | en | en |
dc.publisher | Frontiers | en |
dc.relation.uri | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000416511600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=930d57c9ac61a043676db62af60056c1 | en |
dc.rights | Creative Commons Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Plant Sciences | en |
dc.subject | phytic acid | en |
dc.subject | soybean seed development | en |
dc.subject | myo-inositol metabolism | en |
dc.subject | unsupervised machine learning | en |
dc.subject | gene regulatory network | en |
dc.subject | GENE-EXPRESSION DATA | en |
dc.subject | ARABIDOPSIS-THALIANA | en |
dc.subject | SIGNAL-TRANSDUCTION | en |
dc.subject | CELL-DEATH | en |
dc.subject | AUXIN | en |
dc.subject | MAIZE | en |
dc.subject | BIOSYNTHESIS | en |
dc.subject | SYNTHASE | en |
dc.subject | REVEALS | en |
dc.subject | KINASE | en |
dc.title | Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds | en |
dc.title.serial | Frontiers in Plant Science | en |
dc.type | Article - Refereed | en |
dc.type.dcmitype | Text | en |
pubs.organisational-group | /Virginia Tech | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/CALS T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/Crop & Soil Environmental Science | en |
pubs.organisational-group | /Virginia Tech/Agriculture & Life Sciences/Plant Pathology, Physiology, & Weed Science | en |
pubs.organisational-group | /Virginia Tech/All T&R Faculty | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences | en |
pubs.organisational-group | /Virginia Tech/University Research Institutes/Fralin Life Sciences/Fralin Affiliated Faculty | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Inference of Transcription Regulatory Network in Low Phytic Acid Soybean Seeds.pdf
- Size:
- 3.34 MB
- Format:
- Adobe Portable Document Format
- Description:
- Publisher's Version
License bundle
1 - 1 of 1
- Name:
- VTUL_Distribution_License_2016_05_09.pdf
- Size:
- 18.09 KB
- Format:
- Adobe Portable Document Format
- Description: