ImageSI: Interactive Deep Learning for Image Semantic Interaction
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Interactive deep learning frameworks are crucial for effectively exploring and analyzing complex image datasets in visual analytics. However, existing approaches often face challenges related to inference accuracy and adaptability. To address these issues, we propose ImageSI, a framework integrating deep learning models with semantic interaction techniques for interactive image data analysis. Unlike traditional methods, ImageSI directly incorporates user feedback into the image model, updating underlying embeddings through customized loss functions, thereby enhancing the performance of dimension reduction tasks. We introduce three variations of ImageSI, ImageSI