ImageSI: Interactive Deep Learning for Image Semantic Interaction
dc.contributor.author | Lin, Jiayue | en |
dc.contributor.committeechair | North, Christopher L. | en |
dc.contributor.committeemember | Faust, Rebecca Jane | en |
dc.contributor.committeemember | Huang, Lifu | en |
dc.contributor.department | Computer Science and#38; Applications | en |
dc.date.accessioned | 2024-06-05T08:02:26Z | en |
dc.date.available | 2024-06-05T08:02:26Z | en |
dc.date.issued | 2024-06-04 | en |
dc.description.abstract | Interactive deep learning frameworks are crucial for effectively exploring and analyzing complex image datasets in visual analytics. However, existing approaches often face challenges related to inference accuracy and adaptability. To address these issues, we propose ImageSI, a framework integrating deep learning models with semantic interaction techniques for interactive image data analysis. Unlike traditional methods, ImageSI directly incorporates user feedback into the image model, updating underlying embeddings through customized loss functions, thereby enhancing the performance of dimension reduction tasks. We introduce three variations of ImageSI, ImageSI$_{text{MDS}^{-1}}$, prioritizing explicit pairwise relationships from user interaction, and ImageSI$_{text{DRTriplet}}$ and ImageSI$_{text{PHTriplet}}$, emphasizing clustering by defining groups of images based on user input. Through usage scenarios and quantitative analyses centered on algorithms, we demonstrate the superior performance of ImageSI$_{text{DRTriplet}}$ and ImageSI$_{text{MDS}^{-1}}$ in terms of inference accuracy and interaction efficiency. Moreover, ImageSI$_{text{PHTriplet}}$ shows competitive results. The baseline model, WMDS$^{-1}$, generally exhibits lower performance metrics. | en |
dc.description.abstractgeneral | Interactive deep learning frameworks are crucial for effectively exploring and analyzing complex image datasets in visual analytics. However, existing approaches often face challenges related to inference accuracy and adaptability. To address these issues, we propose ImageSI, a framework integrating deep learning models with semantic interaction techniques for interactive image data analysis. Unlike traditional methods, ImageSI directly incorporates user feedback into the image model, updating underlying embeddings through customized loss functions, thereby enhancing the performance of dimension reduction tasks. We introduce three variations of ImageSI, ImageSI$_{text{MDS}^{-1}}$, prioritizing explicit pairwise relationships from user interaction, and ImageSI$_{text{DRTriplet}}$ and ImageSI$_{text{PHTriplet}}$, emphasizing clustering by defining groups of images based on user input. Through usage scenarios and quantitative analyses centered on algorithms, we demonstrate the superior performance of ImageSI$_{text{DRTriplet}}$ and ImageSI$_{text{MDS}^{-1}}$ in terms of inference accuracy and interaction efficiency. Moreover, ImageSI$_{text{PHTriplet}}$ shows competitive results. The baseline model, WMDS$^{-1}$, generally exhibits lower performance metrics. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:40777 | en |
dc.identifier.uri | https://hdl.handle.net/10919/119283 | en |
dc.language.iso | en | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Semantic Interaction | en |
dc.subject | Deep Learning | en |
dc.subject | Dimension Reduction | en |
dc.subject | Images | en |
dc.title | ImageSI: Interactive Deep Learning for Image Semantic Interaction | en |
dc.type | Thesis | en |
thesis.degree.discipline | Computer Science & Applications | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1