Predicting Motion of Engine-Ingested Particles Using Deep Neural Networks

TR Number

Date

2022-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The ultimate goal of this work is to facilitate the design of gas turbine engine particle separators by reducing the computational expense to accurately simulate the fluid flow and particle motion inside the separator. It has been well-documented that particle ingestion yields many detrimental impacts for gas turbine engines. The consequences of ice particle ingestion can range from surface-wear abrasion to engine power loss. It is known that sufficiently small particles, characterized by small particle response times (τp), closely follow the fluid trajectory whereas large particles deviate from the streamlines. Rather than manually deriving how the particle acceleration varies from the fluid acceleration, this work chooses to implicitly derive this relationship using machine learning (ML). Inertial particle separators are devices designed to remove particles from the engine intake flow, which contributes to both elongating the lifespan and promoting safer operation of aviation gas turbine engines. Complex flows, such as flow through a particle separator, naturally have rotation and strain present throughout the flow field. This study attempts to understand if the motion of particles within rotational and strained canonical flows can be accurately predicted using supervised ML. This report suggests that preprocessing the ML training data to the fluid streamline coordinates can improve model training. ML models were developed for predicting particle acceleration in laminar, fully rotational/irrotational flows and combined laminar flows with rotation and strain. Lastly, the ML model is applied to particle data extracted from a Computational Fluid Dynamics (CFD) study of particle-laden flow around a louver-geometry. However, the model trained with particle data from combined canonical flows fails to accurately predict particle accelerations in the CFD flow field.

Description

Keywords

particle separators, canonical flows, flow decomposition

Citation

Collections