VTechWorks staff will be away for the winter holidays starting Tuesday, December 24, 2024, through Wednesday, January 1, 2025, and will not be replying to requests during this time. Thank you for your patience, and happy holidays!
 

Parameterizing Lognormal state space models using moment matching

Files

TR Number

Date

2023-09

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

In ecology, it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system’s commodity. In this paper, we propose a novel method for parameterizing Lognormal state space models using an approach based on moment matching. Our method enforces the positivity constraint, allows for arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing Lognormal state space models and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess the estimation of precision parameters between our method and existing methods. We find that our models perform well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two Lognormal state space models in predicting the Leaf Area Index over a 151 day horizon by using a process-based ecosystem model to describe the temporal dynamics. We find that our moment matching model performs better than its competitor, and is better suited for intermediate predictive horizons. Overall, our study helps to inform practitioners about the importance of incorporating sensible dynamics when using models of complex systems to predict out-of-sample.

Description

Keywords

Bayesian statistics, Forecasting, MCMC, Particle filter, State space model

Citation