Adversarial RFML: Evading Deep Learning Enabled Signal Classification
dc.contributor.author | Flowers, Bryse Austin | en |
dc.contributor.committeechair | Buehrer, R. Michael | en |
dc.contributor.committeechair | Headley, William C. | en |
dc.contributor.committeemember | Gerdes, Ryan M. | en |
dc.contributor.committeemember | Yu, Guoqiang | en |
dc.contributor.department | Electrical and Computer Engineering | en |
dc.date.accessioned | 2019-07-25T08:00:42Z | en |
dc.date.available | 2019-07-25T08:00:42Z | en |
dc.date.issued | 2019-07-24 | en |
dc.description.abstract | Deep learning has become an ubiquitous part of research in all fields, including wireless communications. Researchers have shown the ability to leverage deep neural networks (DNNs) that operate on raw in-phase and quadrature samples, termed Radio Frequency Machine Learning (RFML), to synthesize new waveforms, control radio resources, as well as detect and classify signals. While there are numerous advantages to RFML, this thesis answers the question "is it secure?" DNNs have been shown, in other applications such as Computer Vision (CV), to be vulnerable to what are known as adversarial evasion attacks, which consist of corrupting an underlying example with a small, intelligently crafted, perturbation that causes a DNN to misclassify the example. This thesis develops the first threat model that encompasses the unique adversarial goals and capabilities that are present in RFML. Attacks that occur with direct digital access to the RFML classifier are differentiated from physical attacks that must propagate over-the-air (OTA) and are thus subject to impairments due to the wireless channel or inaccuracies in the signal detection stage. This thesis first finds that RFML systems are vulnerable to current adversarial evasion attacks using the well known Fast Gradient Sign Method originally developed for CV applications. However, these current adversarial evasion attacks do not account for the underlying communications and therefore the adversarial advantage is limited because the signal quickly becomes unintelligible. In order to envision new threats, this thesis goes on to develop a new adversarial evasion attack that takes into account the underlying communications and wireless channel models in order to create adversarial evasion attacks with more intelligible underlying communications that generalize to OTA attacks. | en |
dc.description.abstractgeneral | Deep learning is beginning to permeate many commercial products and is being included in prototypes for next generation wireless communications devices. This technology can provide huge breakthroughs in autonomy; however, it is not sufficient to study the effectiveness of deep learning in an idealized laboratory environment, the real world is often harsh and/or adversarial. Therefore, it is important to know how, and when, these deep learning enabled devices will fail in the presence of bad actors before they are deployed in high risk environments, such as battlefields or connected autonomous vehicle communications. This thesis studies a small subset of the security vulnerabilities of deep learning enabled wireless communications devices by attempting to evade deep learning enabled signal classification by an eavesdropper while maintaining effective wireless communications with a cooperative receiver. The primary goal of this thesis is to define the threats to, and identify the current vulnerabilities of, deep learning enabled signal classification systems, because a system can only be secured once its vulnerabilities are known. | en |
dc.description.degree | Master of Science | en |
dc.format.medium | ETD | en |
dc.identifier.other | vt_gsexam:21663 | en |
dc.identifier.uri | http://hdl.handle.net/10919/91987 | en |
dc.publisher | Virginia Tech | en |
dc.rights | In Copyright | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject | Adversarial Signal Processing | en |
dc.subject | Cognitive Radio Security | en |
dc.subject | Machine learning | en |
dc.subject | Modulation Identification | en |
dc.subject | Radio Frequency Machine learning | en |
dc.title | Adversarial RFML: Evading Deep Learning Enabled Signal Classification | en |
dc.type | Thesis | en |
thesis.degree.discipline | Computer Engineering | en |
thesis.degree.grantor | Virginia Polytechnic Institute and State University | en |
thesis.degree.level | masters | en |
thesis.degree.name | Master of Science | en |
Files
Original bundle
1 - 1 of 1