Neural Network-Based Model Reduction of Hydrodynamics Forces on an Airfoil
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this paper, an artificial neural network (ANN)-based reduced order model (ROM) is developed for the hydrodynamics forces on an airfoil immersed in the flow field at different angles of attack. The proper orthogonal decomposition (POD) of the flow field data is employed to obtain pressure modes and the temporal coefficients. These temporal pressure coefficients are used to train the ANN using data from three different angles of attack. The trained network then takes the value of angle of attack (AOA) and past POD coefficients as an input and predicts the future temporal coefficients. We also decompose the surface pressure modes into lift and drag components. These surface pressure modes are then employed to calculate the pressure component of lift and drag coefficients. The train model is then tested on the in-sample data and out-of-sample data. The results show good agreement with the true numerical data, thus validating the neural network based model.