Neural Network-Based Model Reduction of Hydrodynamics Forces on an Airfoil

dc.contributor.authorFarooq, Hamayunen
dc.contributor.authorSaeed, Ahmaden
dc.contributor.authorAkhtar, Imranen
dc.contributor.authorBangash, Zafaren
dc.date.accessioned2021-09-27T12:25:36Zen
dc.date.available2021-09-27T12:25:36Zen
dc.date.issued2021-09-15en
dc.date.updated2021-09-25T23:33:04Zen
dc.description.abstractIn this paper, an artificial neural network (ANN)-based reduced order model (ROM) is developed for the hydrodynamics forces on an airfoil immersed in the flow field at different angles of attack. The proper orthogonal decomposition (POD) of the flow field data is employed to obtain pressure modes and the temporal coefficients. These temporal pressure coefficients are used to train the ANN using data from three different angles of attack. The trained network then takes the value of angle of attack (AOA) and past POD coefficients as an input and predicts the future temporal coefficients. We also decompose the surface pressure modes into lift and drag components. These surface pressure modes are then employed to calculate the pressure component of lift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>C</mi><mi>L</mi><mi>p</mi></msubsup></semantics></math></inline-formula> and drag <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>C</mi><mi>D</mi><mi>p</mi></msubsup></semantics></math></inline-formula> coefficients. The train model is then tested on the in-sample data and out-of-sample data. The results show good agreement with the true numerical data, thus validating the neural network based model.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFarooq, H.; Saeed, A.; Akhtar, I.; Bangash, Z. Neural Network-Based Model Reduction of Hydrodynamics Forces on an Airfoil. Fluids 2021, 6, 332.en
dc.identifier.doihttps://doi.org/10.3390/fluids6090332en
dc.identifier.urihttp://hdl.handle.net/10919/105070en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectreduced-order modelingen
dc.subjectneural networksen
dc.subjectairfoilen
dc.subjecthydrodynamic forcesen
dc.titleNeural Network-Based Model Reduction of Hydrodynamics Forces on an Airfoilen
dc.title.serialFluidsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fluids-06-00332.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: