Comparative analysis of the global transcriptome of Anopheles funestus from Mali, West Africa.


BACKGROUND: Anopheles funestus is a principal vector of malaria across much of tropical Africa and is considered one of the most efficient of its kind, yet studies of this species have lagged behind those of its broadly sympatric congener, An. gambiae. In aid of future genomic sequencing of An. funestus, we explored the whole body transcriptome, derived from mixed stage progeny of wild-caught females from Mali, West Africa. PRINCIPAL FINDINGS: Here we report the functional annotation and comparative genomics of 2,005 expressed sequence tags (ESTs) from An. funestus, which were assembled with a previous EST set from adult female salivary glands from the same mosquito. The assembled ESTs provided for a nonredundant catalog of 1,035 transcripts excluding mitochondrial sequences. CONCLUSIONS/SIGNIFICANCE: Comparison of the An. funestus and An. gambiae transcriptomes using computational and macroarray approaches revealed a high degree of sequence identity despite an estimated 20-80 MY divergence time between lineages. A phylogenetically broader comparative genomic analysis indicated that the most rapidly evolving proteins--those involved in immunity, hematophagy, formation of extracellular structures, and hypothetical conserved proteins--are those that probably play important roles in how mosquitoes adapt to their nutritional and external environments, and therefore could be of greatest interest in disease control.

Animals, Anopheles, Apoptosis, Computational Biology, DNA, Complementary, Expressed Sequence Tags, Female, Gene Expression Profiling, Gene Library, Genomics, Malaria, Mali, Mitochondria, Salivary Glands, Transcription, Genetic