Double helical conformation and extreme rigidity in a rodlike polyelectrolyte

dc.contributor.authorWang, Yingen
dc.contributor.authorHe, Yadongen
dc.contributor.authorYu, Zhouen
dc.contributor.authorGao, Jianweien
dc.contributor.authorten Brinck, Stephanieen
dc.contributor.authorSlebodnick, Carlaen
dc.contributor.authorFahs, Gregory B.en
dc.contributor.authorZanelotti, Curt J.en
dc.contributor.authorHegde, Marutien
dc.contributor.authorMoore, Robert Bowenen
dc.contributor.authorEnsing, Bernden
dc.contributor.authorDingemans, Theo J.en
dc.contributor.authorQiao, Ruien
dc.contributor.authorMadsen, Louis A.en
dc.contributor.departmentMechanical Engineeringen
dc.contributor.departmentChemistryen
dc.contributor.departmentMacromolecules Innovation Instituteen
dc.date.accessioned2019-03-29T13:05:27Zen
dc.date.available2019-03-29T13:05:27Zen
dc.date.issued2019-02-18en
dc.description.abstractThe ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we report a double helical conformation in the densely charged aromatic polyamide poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~ 1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of other 1D-reinforced composites. © 2019, The Author(s).en
dc.description.notesThe authors wish to thank Professors Dimitri Ivanov and Edward T. Samulski for helpful discussions. This work was supported in part by the National Science Foundation under award numbers DMR 1507764, 1810194, and 1507245. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF). This work was also supported in part by the Institute for Critical Technology and Applied Science (ICTAS) and the Open Access Subvention Fund (OASF) at Virginia Tech.en
dc.format.mimetypeapplication/pdfen
dc.identifier.doihttps://doi.org/10.1038/s41467-019-08756-3en
dc.identifier.issn20411723en
dc.identifier.issue1en
dc.identifier.other801en
dc.identifier.pmid30778067en
dc.identifier.urihttp://hdl.handle.net/10919/88748en
dc.identifier.volume10en
dc.language.isoen_USen
dc.publisherNature Publishing Groupen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleDouble helical conformation and extreme rigidity in a rodlike polyelectrolyteen
dc.title.serialNature Communicationsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-019-08756-3.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description: