VTechWorks staff will be away for the Thanksgiving holiday beginning at noon on Wednesday, November 27, through Friday, November 29. We will resume normal operations on Monday, December 2. Thank you for your patience.
 

Design, Analysis, and Application of Architected Ferroelectric Lattice Materials

Files

TR Number

Date

2019-06-21

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Ferroelectric materials have been an area of keen interest for researchers due to their useful electro-mechanical coupling properties for a range of modern applications, such as sensing, precision actuation, or energy harvesting. The distribution of the piezoelectric coefficients, which corresponds to the piezoelectric properties, in traditional crystalline ferroelectric materials are determined by their inherent crystalline structure. This restriction limits the tunability of their piezoelectric properties. In the present work, ferroelectric lattice materials capable of a wide range of rationally designed piezoelectric coefficients are achieved through lattice micro-architecture design. The piezoelectric coefficients of several lattice designs are analyzed and predicted using an analytical volume-averaging approach. Finite element models were used to verify the analytical predictions and strong agreement between the two sets of results were found. Select lattice designs were additively manufactured using projection microstereolithography from a PZT-polymer composite and their piezoelectric coefficients experimentally verified and also found to be in agreement with the analytical and numerical predictions. The results show that the use of lattice micro-architecture successfully decouples the dependency of the piezoelectric properties on the material's crystalline structure, giving the user a means to tune the piezoelectric properties of the lattice materials. Real-world application of a ferroelectric lattice structure is demonstrated through application as a multi-directional stress sensor.

Description

Keywords

architected lattice, ferroelectric materials, rational design

Citation

Collections