Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results
Files
TR Number
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Background There is growing evidence that mild traumatic brain injury (concussion) can affect locomotor characteristics for prolonged periods of time even when physical signs and symptoms are absent. While most locomotor deficits post-concussion have involved straight walking, turning gait has received little attention despite its pervasiveness in everyday locomotion and athletic competition.
Methods This study longitudinally examined kinematic characteristics during preplanned turning in a small sample of recently concussed athletes (n = 4) and healthy matched control athletes (n = 4) to examine potential deficits during single and dual-task turning gait over the initial 6 weeks post-injury, with a one-year follow-up. Turning path kinematics (curvature, obstacle clearance, path length), stride kinematics (stride length, stride width, stride time), and inclination angles were calculated from motion capture of participants walking around an obstacle.
Results Concussed athletes had larger dual-task costs in turning speed and stride time compared to healthy controls. After controlling for speed and turn curvature, recently concussed athletes increased their inclination towards the inside of the turn over time and decreased their stride time compared to controls indicating a prolonged recovery. Kinematic differences between groups were estimated to recover to healthy levels between 100 and 300 days post-injury, suggesting future prospective longitudinal studies should span 6–12 months post-injury.
Conclusion Turning gait should be included in future studies of concussion and may be a clinically useful tool. Future longitudinal studies should consider examining gait changes for up to 6–12 months post-injury.