Tibial Acceleration and Shock Attenuation in Female and Male Distance Runners at Different Levels of Body Weight Unloading
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Running popularity has led to a rise in chronic lower limb injuries resulting from cumulative loading. Many of these injuries are tibial stress fractures. Tibial accelerometers are commonly used to measure tibial stress and may even be predictive of injury at the distal limb. Lower body positive pressure (LBPP) treadmills have become increasingly popular amongst athletes and practitioners to prevent and treat lower limb injuries by reducing effective body weight (BW) through mechanical support. The purpose of this thesis is to investigate if BW unloading affects tibial acceleration (TA) and shock attenuation. Twelve trained distance runners (Sex: 6 males and 6 females; Age: 18-30 years) were recruited for this study. TA was measured through two Blue Trident, IMeasureU step units located at the distal tibiae. A STATSports Apex unit was also used to measure acceleration at the superior trunk and calculate shock attenuation for each limb. It was found that BW unloading had no discernable effect on mean peak TA and shock attenuation, bone stimulus, or contact time, regardless of running speed. However, a significant relationship was observed between running speed and both mean peak TA and bone stimulus where an increase in speed led to an increase in TA and bone stimulus. Furthermore, running speed did not affect shock attenuation or contact time. In conclusion, BW unloading did not alter gait kinematics in trained distance runners.