Structure-Property Relationships of Isoprene-Sodium Styrene Sulfonate Elastomeric Ionomers
Files
TR Number
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Polymers containing less than 10 mol % of ions (ionomers) have been studied in depth for their potential in producing polymers with tailored properties for specific applications. A small molar percentage of ions can be incorporated into a polymer to drastically enhance the properties of the polymer. An ionomer that has been studied is that of isoprene copolymerized with sodium styrene sulfonate (poly(I-co-NaSS)). Research has been performed relating to the synthesis and chemical characterization of the copolymers. However, an in depth study of the way the physical properties are affected by a change in ion concentration has not been presented. Thus, it is the goal of this thesis to synthesize a series of poly(I-co-NaSS) copolymers with varying levels of sulfonated styrene and characterize their physical properties.
The poly(I-co-NaSS) polymers, containing a range of 1.15 to 4.74 mol % NaSS, were polymerized using free radical emulsion polymerization. The copolymer compositions were confirmed using combustion sulfur analysis. Dynamic light scattering indicated that large aggregates were present in solution. These aggregates were large enough that capillary intrinsic viscosities could not be measured. Small angle x-ray scattering (SAXS) and thermal analysis showed little change as the ion concentration was increased, while tensile, stress relaxation and adhesion properties were improved. The absence of changes in the SAXS patterns indicated that there was an absence of a well-defined ionic aggregate, while the mechanical properties showed evidence of electrostatic interactions. This can be at least partially attributed to ionic interactions on a smaller scale (doublets, triplets).