Supernova Physics at DUNE

dc.contributor.authorAnkowski, Artur M.en
dc.contributor.authorBeacom, Johnen
dc.contributor.authorBenhar, Omaren
dc.contributor.authorChen, Sunen
dc.contributor.authorCherry, J. J.en
dc.contributor.authorCui, Yanouen
dc.contributor.authorFriedland, Alexanderen
dc.contributor.authorGil-Botella, Inesen
dc.contributor.authorHaghighat, Alirezaen
dc.contributor.authorHoriuchi, Shunsakuen
dc.contributor.authorHuber, Patricken
dc.contributor.authorKneller, Jamesen
dc.contributor.authorLaha, Ranjanen
dc.contributor.authorLi, Shirleyen
dc.contributor.authorLink, Jonathan M.en
dc.contributor.authorLovato, Alessandroen
dc.contributor.authorMacias, Oscaren
dc.contributor.authorMariani, Camilloen
dc.contributor.authorMezzacappa, Anthonyen
dc.contributor.authorO'Connor, Evanen
dc.contributor.authorO'Sullivan, Erinen
dc.contributor.authorRubbia, Andreen
dc.contributor.authorScholberg, Kateen
dc.contributor.authorTakeuchi, Tatsuen
dc.contributor.departmentCenter for Neutrino Physicsen
dc.contributor.departmentMechanical Engineeringen
dc.contributor.departmentPhysicsen
dc.date.accessioned2016-11-14T19:22:12Zen
dc.date.available2016-11-14T19:22:12Zen
dc.date.issued2016en
dc.description.abstractThe DUNE/LBNF program aims to address key questions in neutrino physics and astroparticle physics. Realizing DUNE’s potential to reconstruct low-energy particles in the 10–100 MeV energy range will bring significant benefits for all DUNE’s science goals. In neutrino physics, low-energy sensitivity will improve neutrino energy reconstruction in the GeV range relevant for the kinematics of DUNE’s long-baseline oscillation program. In astroparticle physics, low-energy capabilities will make DUNE’s far detectors the world’s best apparatus for studying the electron-neutrino flux from a supernova. This will open a new window to unrivaled studies of the dynamics and neutronization of a star’s central core in real time, the potential discovery of the neutrino mass hierarchy, provide new sensitivity to physics beyond the Standard Model, and evidence of neutrino quantum-coherence effects. The same capabilities will also provide new sensitivity to ‘boosted dark matter’ models that are not observable in traditional direct dark matter detectors.en
dc.description.notesarchiveprefix: arXiv primaryclass: hep-ex slaccitation: %%CITATION = ARXIV:1608.07853;%%en
dc.identifier.urihttp://hdl.handle.net/10919/73435en
dc.relation.urihttp://inspirehep.net/record/1484266/files/arXiv:1608.07853.pdfen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.titleSupernova Physics at DUNEen
dc.typeArticleen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1608.07853v1.pdf
Size:
195.85 KB
Format:
Adobe Portable Document Format
Description:
Draft Version
License bundle
Now showing 1 - 1 of 1
Name:
VTUL_Distribution_License_2016_05_09.pdf
Size:
18.09 KB
Format:
Adobe Portable Document Format
Description: