Capillary forces on a small particle at a liquid-vapor interface: Theory and simulation

dc.contributor.authorTang, Yanfeien
dc.contributor.authorCheng, Shengfengen
dc.contributor.departmentCenter for Soft Matter and Biological Physicsen
dc.contributor.departmentPhysicsen
dc.contributor.departmentMacromolecules Innovation Instituteen
dc.date.accessioned2019-02-04T14:07:48Zen
dc.date.available2019-02-04T14:07:48Zen
dc.date.issued2018-09-24en
dc.date.updated2019-02-04T14:07:47Zen
dc.description.abstractWe study the meniscus on the outside of a small spherical particle with radius R at a liquid-vapor interface. The liquid is confined in a cylindrical container with a finite radius L and has a contact angle π/2 at the container surface. The center of the particle is placed at various heights along the central axis of the container. By varying L, we are able to systematically study the crossover of the meniscus from nanometer to macroscopic scales. The meniscus rise or depression on the particle is found to grow as ln(2L/R) when R << L << κ<sup>−1</sup> with κ<sup>−1</sup> being the capillary length and saturate to a value predicted by the Derjaguin-James formula when R << κ<sup>−1</sup> << L. The capillary force on the particle exhibits a linear dependence on the particle’s displacement from its equilibrium position at the interface when the displacement is small. The associated spring constant is found to be 2πγ ln<sup>−1</sup> (2L/R) for L << κ<sup>−1</sup> and saturate to 2πγ ln<sup>−1</sup>(3.7κ−1/R) for L << κ<sup>−1</sup>. At nanometer scales, we perform molecular dynamics simulations of the described geometry and the results agree well with the predictions of the macroscopic theory of capillarity. At micrometer to macroscopic scales, comparison to experiments by Anachkov et al. [Soft Matter 12, 7632 (2016).] shows that the finite span of a liquid-vapor or liquid-liquid interface needs to be considered to interpret experimental data collected with L ∼ κ<sup>−1</sup>.en
dc.description.versionPublished versionen
dc.format.extentPages 032802-1-032802-15en
dc.format.extent15 page(s)en
dc.identifier032801 (Article number)en
dc.identifier.doihttps://doi.org/10.1103/PhysRevE.98.032802en
dc.identifier.issn1539-3755en
dc.identifier.issue03en
dc.identifier.orcidCheng, Shengfeng [0000-0002-6066-2968]en
dc.identifier.urihttp://hdl.handle.net/10919/87421en
dc.identifier.volume98en
dc.languageEnglishen
dc.publisherAmerican Physical Societyen
dc.relation.urihttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.032802en
dc.relation.urihttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.032802en
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject01 Mathematical Sciencesen
dc.subject02 Physical Sciencesen
dc.subject09 Engineeringen
dc.subjectFluids & Plasmasen
dc.titleCapillary forces on a small particle at a liquid-vapor interface: Theory and simulationen
dc.title.serialPhysical Review Een
dc.typeArticle - Refereeden
dc.type.otherArticleen
dcterms.dateAccepted2018-09-05en
pubs.organisational-group/Virginia Tech/Scienceen
pubs.organisational-group/Virginia Techen
pubs.organisational-group/Virginia Tech/All T&R Facultyen
pubs.organisational-group/Virginia Tech/Science/Physicsen
pubs.organisational-group/Virginia Tech/Science/COS T&R Facultyen

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tang18.PRE.sphere.wetting.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Published version