Design of 1.7 kV SiC MOSFET Switching-Cells for Integrated Power Electronics Building Block (iPEBB)

TR Number

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

The need for high-density power electronics converters becomes more critical by the day as energy consumption continues to grow across the world. Specifically, the need for medium-voltage (MV) high-density converters in power distribution systems, electric ships, and airplanes become more critical as weight and space becomes more a premium. The limited space and footprint require new packaging technologies and methods to develop an integrated power converter.

The advancement of wide-bandgap (WBG) devices like silicon carbide (SiC) allows converters to have higher power and faster switching... To benefit from these devices, the packaging of the converter needs to be carefully considered. This thesis presents the design of a 250 kW integrated power electronics building block (iPEBB) for future electric system applications. This work explores the common substrate concept that would serve as the electrical, thermal, and mechanical foundation for the converter. State-of-the-art organic direct-bonded copper (ODBC) is explored to serve as the material foundation for the common substrate. Multi-domain simulations are used to design the integrated SiC bridges to achieve a power loop inductance of 3.5 nH, a maximum temperature of 175 °C, and a weight of 16 kg. ODBC and silicon nitride switching cells are packaged and analyzed in order to see the benefits on a multi-layer design as well as determining electrical and thermal trade-offs. The insights gained from hardware testing will help in the redesign and refinement of the iPEBB.

Description

Keywords

PEBB, SiC, power electronics

Citation

Collections