Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells

dc.contributor.authorLyu, Pengchengen
dc.contributor.authorSettlage, Robert E.en
dc.contributor.authorJiang, Honglinen
dc.date.accessioned2021-12-20T12:43:36Zen
dc.date.available2021-12-20T12:43:36Zen
dc.date.issued2021-12-16en
dc.date.updated2021-12-19T04:10:18Zen
dc.description.abstractBackground Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. Results Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. Conclusions Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationBMC Genomics. 2021 Dec 16;22(1):901en
dc.identifier.doihttps://doi.org/10.1186/s12864-021-08224-7en
dc.identifier.urihttp://hdl.handle.net/10919/107129en
dc.language.isoenen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.holderThe Author(s)en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleGenome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cellsen
dc.title.serialBMC Genomicsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
12864_2021_Article_8224.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: