Development of a Support-Vector-Machine-based Supervised Learning Algorithm for Land Cover Classification Using Polarimetric SAR Imagery

TR Number
Journal Title
Journal ISSN
Volume Title
Virginia Tech

Land cover classification using Synthetic Aperture Radar (SAR) data has been a topic of great interest in recent literature. Food commodities output prediction through crop identification, environmental monitoring, and forest regrowth tracking are some of the many problems that can be aided by land cover classification methods. The need for fast and automated classification methods is apparent in a variety of applications involving vast amounts of SAR data. One fundamental step in any supervised learning classification algorithm is the selection and/or extraction of features present in the dataset to be used for class discrimination. A popular method that has been proposed for feature extraction from polarimetric data is to decompose the data into the underlying scattering mechanisms. In this research, the Freeman and Durden scattering model is applied to ALOS PALSAR fully polarimetric data for feature extraction. Efficient methods for solving the complex system of equations present in the scattering model are developed and compared. Using the features from the Freeman and Durden work, the classification capability of the model is assessed on amazon rainforest land cover types using a supervised Support Vector Machine (SVM) classification algorithm. The quantity of land cover types that can be discriminated using the model is also determined. Additionally, the performance of the median as a robust estimator in noisy environments for multi-pixel windowing is also characterized.

Synthetic Aperture Radar, Support Vector Machine, Robust, Polarimetric