Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of a modified k-[epsilon] turbulence model to gas turbine combustor geometries

    Thumbnail
    View/Open
    LD5655.V855_1993.R453.pdf (118.6Mb)
    Downloads: 5
    Date
    1993
    Author
    Relation, Heather L.
    Metadata
    Show full item record
    Abstract
    The k-epsilon turbulence model yields inconsistent and diffusive results for swirling and recirculating flows, which are characteristic of combustor geometries. Y. S. Chen and S. W. Kim propose a modification to the k-epsilon turbulence model which has shown improved predictions for several complex flows. This study evaluates the application of the Chen modification of the k-epsilon turbulence model to combustor geometries by applying the modification to two burner test cases which contain the elemental flow characteristics of an industrial gas turbine combustor. The modification is implemented into a commercial computational fluid dynamics (CFD) code. The results show an improved prediction of the location, shape and size of the primary centerline recirculation zone for both cases. The large swirl and axial velocity gradients, which are diffused by the standard k-epsilon model, are preserved by the Chen model. The overprediction of turbulent eddy viscosity in regions of high shear, which is characteristic of k-epsilon, is controlled by the Chen modification. In industrial combustor design, the prediction of the location, size and shape of primary flow features is of paramount importance. The Chen modification can, therefore, be considered a successful improvement to the k-epsilon model and can be considered applicable to combustor geometries.
    URI
    http://hdl.handle.net/10919/45375
    Collections
    • Masters Theses [19683]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us