Browsing by Author "Yue, Xiaowei"
Now showing 1 - 20 of 29
Results Per Page
Sort Options
- Advanced Data Analytics for Quality Assurance of Smart Additive ManufacturingShen, Bo (Virginia Tech, 2022-07-07)Additive manufacturing (AM) is a powerful emerging technology for fabricating components with complex geometries using a variety of materials. However, despite the promising potential, due to the complexity of the process dynamics, how to ensure product quality and consistency of AM parts efficiently during the process remains challenging. Therefore, this dissertation aims to develop advanced machine learning methods for online process monitoring and quality assurance of smart additive manufacturing. Driven by edge computing, the Industrial Internet of Things (IIoT), sensors and other smart technologies, data collection, communication, analytics, and control are infiltrating every aspect of manufacturing. The data provides excellent opportunities to improve and revolutionize manufacturing for both quality and productivity. Despite the massive volume of data generated during a very short time, approximately 90 percent of data gets wasted or unused. The goal of sensing and data analytics for advanced manufacturing is to capture the full insight that data and analytics can discover to help address the most pressing problems. To achieve the above goal, several data-driven approaches have been developed in this dissertation to achieve effective data preprocessing, feature extraction, and inverse design. We also develop related theories for these data-driven approaches to guarantee their performance. The performances have been validated using sensor data from AM processes. Specifically, four new methodologies are proposed and implemented as listed below: 1. To make the unqualified thermal data meet the spatial and temporal resolution requirement of microstructure prediction, a super resolution for multi-sources image stream data using smooth and sparse tensor completion is proposed and applied to data acquisition of additive manufacturing. The qualified thermal data is able to extract useful information like boundary velocity, thermal gradient, etc. 2. To effectively extract features for high dimensional data with limited samples, a clustered discriminant regression is created for classification problems in healthcare and additive manufacturing. The proposed feature extraction method together with classic classifiers can achieve better classification performance than the convolutional neural network for image classification. 3. To extract the melt pool information from the processed X-ray video in metal AM process, a smooth sparse Robust Tensor Decomposition model is devised to decompose the data into the static background, smooth foreground, and noise, respectively. The proposed method exhibits superior performance in extracting the melt pool information on X-ray data. 4. To learn the material property for different printing settings, a multi-task Gaussian process upper confidence bound is developed for the sequential experiment design, where a no-regret algorithm is implemented. The proposed algorithm aims to learn the optimal material property for different printing settings. By fully utilizing the sensor data with innovative data analytics, the above-proposed methodologies are used to perform interdisciplinary research, promote technical innovations, and achieve balanced theoretical/practical advancements. In addition, these methodologies are inherently integrated into a generic framework. Thus, they can be easily extended to other manufacturing processes, systems, or even other application areas such as healthcare systems.
- Advanced Machine Learning for Surrogate Modeling in Complex Engineering SystemsLee, Cheol Hei (Virginia Tech, 2023-08-02)Surrogate models are indispensable in the analysis of engineering systems. The quality of surrogate models is determined by the data quality and the model class but achieving a high standard of them is challenging in complex engineering systems. Heterogeneity, implicit constraints, and extreme events are typical examples of the factors that complicate systems, yet they have been underestimated or disregarded in machine learning. This dissertation is dedicated to tackling the challenges in surrogate modeling of complex engineering systems by developing the following machine learning methodologies. (i) Partitioned active learning partitions the design space according to heterogeneity in response features, thereby exploiting localized models to measure the informativeness of unlabeled data. (ii) For the systems with implicit constraints, failure-averse active learning incorporates constraint outputs to estimate the safe region and avoid undesirable failures in learning the target function. (iii) The multi-output extreme spatial learning enables modeling and simulating extreme events in composite fuselage assembly. The proposed methods were applied to real-world case studies and outperformed benchmark methods.
- Bayesian Optimization for Engineering Design and Quality Control of Manufacturing SystemsAlBahar, Areej Ahmad (Virginia Tech, 2022-04-14)Manufacturing systems are usually nonlinear, nonstationary, highly corrupted with outliers, and oftentimes constrained by physical laws. Modeling and approximation of their underly- ing response surface functions are extremely challenging. Bayesian optimization is a great statistical tool, based on Bayes rule, used to optimize and model these expensive-to-evaluate functions. Bayesian optimization comprises of two important components namely, a sur- rogate model often the Gaussian process and an acquisition function often the expected improvement. The Gaussian process, known for its outstanding modeling and uncertainty quantification capabilities, is used to represent the underlying response surface function, while the expected improvement is used to select the next point to be evaluated by trading- off exploitation and exploration. Although Bayesian optimization has been extensively used in optimizing unknown and expensive-to-evaluate functions and in hyperparameter tuning of deep learning models, mod- eling highly outlier-corrupted, nonstationary, and stress-induced response surface functions hinder the use of conventional Bayesian optimization models in manufacturing systems. To overcome these limitations, we propose a series of systematic methodologies to improve Bayesian optimization for engineering design and quality control of manufacturing systems. Specifically, the contributions of this dissertation can be summarized as follows. 1. A novel asymmetric robust kernel function, called AEN-RBF, is proposed to model highly outlier-corrupted functions. Two new hyperparameters are introduced to im- prove the flexibility and robustness of the Gaussian process model. 2. A nonstationary surrogate model that utilizes deep multi-layer Gaussian processes, called MGP-CBO, is developed to improve the modeling of complex anisotropic con- strained nonstationary functions. 3. A Stress-Aware Optimal Actuator Placement framework is designed to model and op- timize stress-induced nonlinear constrained functions. Through extensive evaluations, the proposed methodologies have shown outstanding and significant improvements when compared to state-of-the-art models. Although these pro- posed methodologies have been applied to certain manufacturing systems, they can be easily adapted to other broad ranges of problems.
- Closed-loop Tool Path Planning for Non-planar Additive Manufacturing and Sensor-based Inspection on Stationary and Moving Freeform ObjectsKucukdeger, Ezgi (Virginia Tech, 2022-06-03)Additive manufacturing (AM) has received much attention from researchers over the past decades because of its diverse applications in various industries. AM is an advanced manufacturing process that facilitates the fabrication of complex geometries represented by computer-aided design (CAD) models. Traditionally, designed parts are fabricated by extruding material layer-by-layer using a tool path planning obtained from slicing programs by using CAD models as an input. Recently, there has been a growing interest in non-planar AM technologies, which offer the ability to fabricate multilayer constructs conforming to freeform surfaces. Non-planar AM processes have been utilized in various applications and involved objects of varying material properties and geometric characteristics. Although the current state of the art suggests AM can provide novel opportunities in conformal manufacturing, several challenges remain to be addressed. The identified challenges in non-planar AM fall into three categories: 1) conformal 3D printing on substrates with complex topography of which CAD model representation is not readily available, 2) understanding the relationship between the tool path planning and the quality of the 3D-printed construct, and 3) conformal 3D printing in the presence of mechanical disturbances. An open-loop non-planar tool path planning algorithm based on point cloud representations of object geometry and a closed-loop non-planar tool path planning algorithm based on position sensing were proposed to address these limitations and enable conformal 3D printing and spatiotemporal 3D sensing on objects of near-arbitrary organic shape. Three complementary studies have been completed towards the goal of improving the conformal tool path planning capabilities in various applications including fabrication of conformal electronics, in situ bioprinting, and spatiotemporal biosensing: i. A non-planar tool path planning algorithm for conformal microextrusion 3D printing based on point cloud data representations of object geometry was presented. Also, new insights into the origin of common conformal 3D printing defects, including tool-surface contact, were provided. The impact and utility of the proposed conformal microextrusion 3D printing process was demonstrated by the fabrication of 3D spiral and Hilbert-curve loop antennas on various non-planar substrates, including wrinkled and folded Kapton films and origami. ii. A new method for closed-loop controlled 3D printing on moving substrates, objects, and unconstrained human anatomy via real-time object position sensing was proposed. Monitoring of the tool position via real-time sensing of nozzle-surface offset using 1D laser displacement sensors enabled conformal 3D printing on moving substrates and objects. The proposed control strategy was demonstrated by microextrusion 3D printing on oscillating substrates and in situ bioprinting on an unconstrained human hand. iii. A reverse engineering-driven collision-free path planning program for automated inspection of macroscale biological specimens, such as tissue-based products and organs, was proposed. The path planning program for impedance-based spatiotemporal biosensing was demonstrated by the characterization of meat and fruit tissues using two impedimetric sensors: a cantilever sensor and a multifunctional fiber sensor.
- Computational Simulation and Machine Learning for Quality Improvement in Composites AssemblyLutz, Oliver Tim (Virginia Tech, 2023-08-22)In applications spanning across aerospace, marine, automotive, energy, and space travel domains, composite materials have become ubiquitous because of their superior stiffness-to-weight ratios as well as corrosion and fatigue resistance. However, from a manufacturing perspective, these advanced materials have introduced new challenges that demand the development of new tools. Due to the complex anisotropic and nonlinear material properties, composite materials are more difficult to model than conventional materials such as metals and plastics. Furthermore, there exist ultra-high precision requirements in safety critical applications that are yet to be reliably met in production. Towards developing new tools addressing these challenges, this dissertation aims to (i) build high-fidelity numerical simulations of composite assembly processes, (ii) bridge these simulations to machine learning tools, and (iii) apply data-driven solutions to process control problems while identifying and overcoming their shortcomings. This is accomplished in case studies that model the fixturing, shape control, and fastening of composite fuselage components. Therein, simulation environments are created that interact with novel implementations of modified proximal policy optimization, based on a newly developed reinforcement learning algorithm. The resulting reinforcement learning agents are able to successfully address the underlying optimization problems that underpin the process and quality requirements.
- Consistency and Uniform Bounds for Heteroscedastic Simulation Metamodeling and Their ApplicationsZhang, Yutong (Virginia Tech, 2023-09-05)Heteroscedastic metamodeling has gained popularity as an effective tool for analyzing and optimizing complex stochastic systems. A heteroscedastic metamodel provides an accurate approximation of the input-output relationship implied by a stochastic simulation experiment whose output is subject to input-dependent noise variance. Several challenges remain unsolved in this field. First, in-depth investigations into the consistency of heteroscedastic metamodeling techniques, particularly from the sequential prediction perspective, are lacking. Second, sequential heteroscedastic metamodel-based level-set estimation (LSE) methods are scarce. Third, the increasingly high computational cost required by heteroscedastic Gaussian process-based LSE methods in the sequential sampling setting is a concern. Additionally, when constructing a valid uniform bound for a heteroscedastic metamodel, the impact of noise variance estimation is not adequately addressed. This dissertation aims to tackle these challenges and provide promising solutions. First, we investigate the information consistency of a widely used heteroscedastic metamodeling technique, stochastic kriging (SK). Second, we propose SK-based LSE methods leveraging novel uniform bounds for input-point classification. Moreover, we incorporate the Nystrom approximation and a principled budget allocation scheme to improve the computational efficiency of SK-based LSE methods. Lastly, we investigate empirical uniform bounds that take into account the impact of noise variance estimation, ensuring an adequate coverage capability.
- Coverage Path Planning for Robotic Quality Inspection With Control on Measurement UncertaintyLiu, Yinhua; Zhao, Wenzheng; Liu, Hongpeng; Wang, Yinan; Yue, Xiaowei (2022-01-01)The optical scanning gauges mounted on the robots are commonly used in quality inspection, such as verifying the dimensional specification of sheet structures. Coverage path planning (CPP) significantly influences the accuracy and efficiency of robotic quality inspection. Traditional CPP strategies focus on minimizing the number of viewpoints or traveling distance of robots under the condition of full coverage inspection. The measurement uncertainty when collecting the scanning data is less considered in the free-form surface inspection. To address this problem, a novel CPP method with the optimal viewpoint sampling strategy is proposed to incorporate the measurement uncertainty of key measurement points (MPs) into free-form surface inspection. At first, the feasible ranges of measurement uncertainty are calculated based on the tolerance specifications of the MPs. The initial feasible viewpoint set is generated considering the measurement uncertainty and the visibility of MPs. Then, the inspection cost function is built to evaluate the number of selected viewpoints and the average measurement uncertainty in the field of views of all the selected viewpoints. Afterward, an enhanced rapidly exploring random tree algorithm is proposed for viewpoint sampling using the inspection cost function and CPP optimization. Case studies, including simulation tests and inspection experiments, have been conducted to evaluate the effectiveness of the proposed method. Results show that the scanning precision of key MPs is significantly improved compared with the benchmark method.
- A Deep Branched Network for Failure Mode Diagnostics and Remaining Useful Life PredictionLi, Zhen; Li, Yongxiang; Yue, Xiaowei; Zio, Enrico; Wu, Jianguo (IEEE, 2022-08)In complex systems, the operating units often suffer from multiple failure modes, and each failure mode results in distinct degradation path and service life. Thus, it is critical to perform the failure mode diagnostics and predict the remaining useful life (RUL) accordingly in modern industrial systems. However, most of the existing approaches consider the prognostic problem under a single failure mode or treat the failure mode classification and RUL prediction as two independent tasks, despite the fact that they are closely related and should be synergistically performed to enhance the generalization performance. Motivated by these issues, we propose a deep branched network (DBNet) for failure mode classification and RUL prediction. In this approach, the two tasks are jointly learned in a sequential manner, in which the feature extraction layers are shared by both tasks, while the neural network branches into individualized subnetworks for RUL prediction of each mode based on the output of the diagnostic subnetwork. Different from the traditional multitask learning-based methods, where the diagnostics and RUL prediction are performed in parallel, the proposed DBNet innovatively couples these two tasks sequentially to boost the prognostic accuracy. The effectiveness of the proposed method is thoroughly demonstrated and evaluated on an aircraft gas turbine engine with multiple failure modes.
- Development of Novel Attention-Aware Deep Learning Models and Their Applications in Computer Vision and Dynamical System CalibrationMaftouni, Maede (Virginia Tech, 2023-07-12)In recent years, deep learning has revolutionized computer vision and natural language processing tasks, but the black-box nature of these models poses significant challenges for their interpretability and reliability, especially in critical applications such as healthcare. To address this, attention-based methods have been proposed to enhance the focus and interpretability of deep learning models. In this dissertation, we investigate the effectiveness of attention mechanisms in improving prediction and modeling tasks across different domains. We propose three essays that utilize task-specific designed trainable attention modules in manufacturing, healthcare, and system identification applications. In essay 1, we introduce a novel computer vision tool that tracks the melt pool in X-ray images of laser powder bed fusion using attention modules. In essay 2, we present a mask-guided attention (MGA) classifier for COVID-19 classification on lung CT scan images. The MGA classifier incorporates lesion masks to improve both the accuracy and interpretability of the model, outperforming state-of-the-art models with limited training data. Finally, in essay 3, we propose a Transformer-based model, utilizing self-attention mechanisms, for parameter estimation in system dynamics models that outpaces the conventional system calibration methods. Overall, our results demonstrate the effectiveness of attention-based methods in improving deep learning model performance and reliability in diverse applications.
- Engineering-driven Machine Learning Methods for System IntelligenceWang, Yinan (Virginia Tech, 2022-05-19)Smart manufacturing is a revolutionary domain integrating advanced sensing technology, machine learning methods, and the industrial internet of things (IIoT). The development of sensing technology provides large amounts and various types of data (e.g., profile, image, point cloud, etc.) to describe each stage of a manufacturing process. The machine learning methods have the advantages of efficiently and effectively processing and fusing large-scale datasets and demonstrating outstanding performance in different tasks (e.g., diagnosis, monitoring, etc.). Despite the advantages of incorporating machine learning methods into smart manufacturing, there are some widely existing concerns in practice: (1) Most of the edge devices in the manufacturing system only have limited memory space and computational capacity; (2) Both the performance and interpretability of the data analytics method are desired; (3) The connection to the internet exposes the manufacturing system to cyberattacks, which decays the trustiness of data, models, and results. To address these limitations, this dissertation proposed systematic engineering-driven machine learning methods to improve the system intelligence for smart manufacturing. The contributions of this dissertation can be summarized in three aspects. First, tensor decomposition is incorporated to approximately compress the convolutional (Conv) layer in Deep Neural Network (DNN), and a novel layer is proposed accordingly. Compared with the Conv layer, the proposed layer significantly reduces the number of parameters and computational costs without decaying the performance. Second, a physics-informed stochastic surrogate model is proposed by incorporating the idea of building and solving differential equations into designing the stochastic process. The proposed method outperforms pure data-driven stochastic surrogates in recovering system patterns from noised data points and exploiting limited training samples to make accurate predictions and conduct uncertainty quantification. Third, a Wasserstein-based out-of-distribution detection (WOOD) framework is proposed to strengthen the DNN-based classifier with the ability to detect adversarial samples. The properties of the proposed framework have been thoroughly discussed. The statistical learning bound of the proposed loss function is theoretically investigated. The proposed framework is generally applicable to DNN-based classifiers and outperforms state-of-the-art benchmarks in identifying out-of-distribution samples.
- Failure-Averse Active Learning for Physics-Constrained SystemsLee, Cheolhei; Wang, Xing; Wu, Jianguo; Yue, Xiaowei (IEEE, 2022-10)Active learning is a subfield of machine learning that is devised for the design and modeling of systems with highly expensive sampling costs. Industrial and engineering systems are generally subject to physics constraints that may induce fatal failures when they are violated, while such constraints are frequently underestimated in active learning. In this paper, we develop a novel active learning method that avoids failures considering implicit physics constraints that govern the system. The proposed approach is driven by two tasks: safe variance reduction explores the safe region to reduce the variance of the target model, and safe region expansion aims to extend the explorable region. The integrated acquisition function is devised to conflate two tasks and judiciously optimize them. The proposed method is applied to the composite fuselage assembly process with consideration of material failure using the Tsai-Wu criterion, and it is able to achieve zero failure without the knowledge of explicit failure regions. Note to Practitioners—This paper is motivated by engineering systems with implicit physics constraints related to system failures. Implicit physics constraints refer to failure processes in which explicit analytic forms do not exist, so demanding numerical simulations or real experiments are required to check one’s safety. The main objective of this paper is to develop an active learning strategy that safely learns the target process in the system by minimizing failures without preliminary reliability analysis. The proposed method mainly targets real systems whose failure conditions are not thoroughly investigated or uncertain. We applied the proposed method to the predictive modeling of composite fuselage deformation in the aircraft manufacturing process, and it achieved zero failure in sampling by considering the composite failure criterion.
- Fair and Risk-Averse Resource Allocation in Transportation Systems under UncertaintiesSun, Luying (Virginia Tech, 2023-07-11)Addressing fairness among users and risk mitigation in the context of resource allocation in transportation systems under uncertainties poses a crucial challenge yet to be satisfactorily resolved. This dissertation attempts to address this challenge, focusing on achieving a balance between system-wide efficiency and individual fairness in stochastic transportation resource allocation problems. To study complicated fair and risk-averse resource allocation problems - from public transit to urban air mobility and multi-stage infrastructure maintenance - we develop three models: DrFRAM, FairUAM, and FCMDP. Each of these models, despite being proven NP-hard even in a simplistic case, inspires us to develop efficient solution algorithms. We derive mixed-integer linear programming (MILP) formulations for these models, leveraging the unique properties of each model and linearizing non-linear terms. Additionally, we strengthen these models with valid inequalities. To efficiently solve these models, we design exact algorithms and approximation algorithms capable of obtaining near-optimal solutions. We numerically validate the effectiveness of our proposed models and demonstrate their capability to be applied to real-world case studies to adeptly address the uncertainties and risks arising from transportation systems. This dissertation provides a foundational platform for future inquiries of risk-averse resource allocation strategies under uncertainties for more efficient, equitable, and resilient decision-making. Our adaptable framework can address a variety of transportation-related challenges and can be extended beyond the transportation domain to tackle resource allocation problems in a broader setting.
- Gaussian Process with Input Location Error and Applications to the Composite Parts Assembly ProcessWang, Wenjia; Yue, Xiaowei; Haaland, Benjamin; Wu, C. F. Jeff (2022-06)This paper investigates Gaussian process modeling with input location error, where the inputs are corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according to whether there is noise at the target location or not. We show that the mean squared prediction error converges to a nonzero constant if there is noise at the target location, and we provide an upper bound of the mean squared prediction error if there is no noise at the target location. We investigate the use of stochastic Kriging in the prediction of Gaussian processes with input location error and show that stochastic Kriging is a good approximation when the sample size is large. Several numerical examples are given to illustrate the results, and a case study on the assembly of composite parts is presented. Technical proofs are provided in the appendices.
- Hierarchical Modeling of Microstructural Images for Porosity Prediction in Metal Additive Manufacturing via Two-point Correlation FunctionGao, Yuanyuan; Wang, Xinming; Son, Junbo; Yue, Xiaowei; Wu, Jianguo (Taylor & Francis, 2022-08)Porosity is one of the most critical quality issues in Additive Manufacturing (AM). As process parameters are closely related to porosity formation, it is vitally important to study their relationship for better process optimization. In this article, motivated by the emerging application of metal AM, a three-level hierarchical mixed-effects modeling approach is proposed to characterize the relationship between microstructural images and process parameters for porosity prediction and microstructure reconstruction. Specifically, a Two-Point Correlation Function (TPCF) is used to capture the morphology of the pores quantitatively. Then, the relationship between the TPCF profile and process parameters is established. A blocked Gibbs sampling approach is developed for parameter inference. Our modeling framework can reconstruct the microstructure based on the predicted TPCF through a simulated annealing optimization algorithm. The effectiveness and advantageous features of our method are demonstrated by both the simulation study and the case study with real-world data from metal AM applications.
- Multi-Physics Sensing and Real-time Quality Control in Metal Additive ManufacturingWang, Rongxuan (Virginia Tech, 2023-06-08)Laser powder bed fusion is one of the most effective ways to achieve metal additive manufacturing. However, this method still suffers from deformation, delamination, dimensional error, and porosities. One of the most significant issues is poor printing accuracy, especially for small features such as turbine blade tips. The main reason for the shape inaccuracy is the heat accumulation caused by using constant laser power regardless of the shape variations. Due to the highly complex and dynamic nature of the laser powder bed fusion, improving the printing quality is challenging. Research gaps exist from many perspectives. For example, the lack of understanding of multi-physical melt pool dynamics fundamentally impedes the research progress. The scarcity of a customizable laser powder bed platform further restricts the possibility of testing the improvement strategies. Additionally, most state-of-the-art quality inspection techniques suitable for laser powder bed fusion are costly in economic and time aspects. Lastly, the rapid and chaotic printing process is hard to monitor and control. This dissertation proposes a complete research scheme including a fundamental physics study, process signature and quality correlation, smart additive manufacturing platform development, high-performance sensor development, and a robust real-time closed-loop control system design to address all these issues. The entire research flow of this dissertation is as follows: 1. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the melt pool dynamics, keyhole, porosity formation, vapor plume, and thermal evolution in Ti-64 and 410 stainless steel. The study discovers a strong correlation between the thermal and X-ray data, enabling the feasibility of using relatively cheap IR cameras to predict features that can only be captured using costly synchrotron X-ray imaging. Such correlation is essential for thermal-based melt pool control. 2. A highly customizable smart laser powder bed fusion platform is designed and constructed. This platform integrates numerous sensors, including but not limited to co-axial cameras, IR cameras, oxygen sensors, photodiodes, etc. The platform allows in-process parameter adjusting, which opens the boundary to test various control theories based on multi-sensing and data correlations. 3. To fulfill the quality assessment need of laser powder bed fusion, this dissertation proposes a novel structured light 3D scanner with extraordinary high spatial resolution. The spatial resolution and accuracy are improved by establishing hardware selection criteria, integrating the proper hardware, designing a scale-appropriate calibration target, and developing noise reduction procedures during calibration. Compared to the commercial scanner, the proposed scanner improves the spatial resolution from 48 µm to 5 µm and the accuracy from 108.5 µm to 0.5 µm. 4. The final goal of quality improvement is achieved through designing and implementing a real-time closed-loop system into the smart laser powder bed fusion platform. The system regulates the laser power based on the monitoring result from a novel thermal sensor. The desired printing temperature is found by correlating the laser power, the dimensional accuracy, and the thermal signatures from a set of thin-wall structure printing trails. An innovative high-speed data acquisition and communication software can operate the whole system with a graphic user interface. The result shows the laser power can be successfully controlled with 2 kHz, and a significant improvement in small feature printing accuracy has been observed.
- MVGCN: Multi-view Graph Convolutional Neural Network for Surface Defect Identification using 3D Point CloudWang, Yinan; Sun, Wenbo; Jin, Jionghua (Judy); Kong, Zhenyu (James); Yue, Xiaowei (2023-03)Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.
- Nested Bayesian Optimization for Computer ExperimentsWang, Yan; Wang, Meng; AlBahar, Areej; Yue, Xiaowei (IEEE, 2022-09)Computer experiments can emulate the physical systems, help computational investigations, and yield analytic solutions. They have been widely employed with many engineering applications (e.g., aerospace, automotive, energy systems). Conventional Bayesian optimization did not incorporate the nested structures in computer experiments. This article proposes a novel nested Bayesian optimization method for complex computer experiments with multistep or hierarchical characteristics. We prove the theoretical properties of nested outputs given that the distribution of nested outputs is Gaussian or non-Gaussian. The closed forms of nested expected improvement are derived. We also propose the computational algorithms for nested Bayesian optimization. Three numerical studies show that the proposed nested Bayesian optimization method outperforms the five benchmark Bayesian optimization methods that ignore the intermediate outputs of the inner computer code. The case study shows that the nested Bayesian optimization can efficiently minimize the residual stress during composite structures assembly and avoid convergence to local optima.
- Neural Network Gaussian Process considering Input Uncertainty and Application to Composite Structures AssemblyLee, Cheol Hei (Virginia Tech, 2020-05-18)Developing machine learning enabled smart manufacturing is promising for composite structures assembly process. It requires accurate predictive analysis on deformation of the composite structures to improve production quality and efficiency of composite structures assembly. The novel composite structures assembly involves two challenges: (i) the highly nonlinear and anisotropic properties of composite materials; and (ii) inevitable uncertainty in the assembly process. To overcome those problems, we propose a neural network Gaussian process model considering input uncertainty for composite structures assembly. Deep architecture of our model allows us to approximate a complex system better, and consideration of input uncertainty enables robust modeling with complete incorporation of the process uncertainty. Our case study shows that the proposed method performs better than benchmark methods for highly nonlinear systems.
- Online Structural Change-point Detection of High-dimensional Streaming Data via Dynamic Sparse Subspace LearningXu, Ruiyu; Wu, Jianguo; Yue, Xiaowei; Li, Yongxiang (Taylor & Francis, 2022-03-30)High-dimensional streaming data are becoming increasingly ubiquitous in many fields. They often lie in multiple low-dimensional subspaces, and the manifold structures may change abruptly on the time scale due to pattern shift or occurrence of anomalies. However, the problem of detecting the structural changes in a real-time manner has not been well studied. To fill this gap, we propose a dynamic sparse subspace learning approach for online structural change-point detection of high-dimensional streaming data. A novel multiple structural change-point model is proposed and the asymptotic properties of the estimators are investigated. A tuning method based on Bayesian information criterion and change-point detection accuracy is proposed for penalty coefficients selection. An efficient Pruned Exact Linear Time based algorithm is proposed for online optimization and change-point detection. The effectiveness of the proposed method is demonstrated through several simulation studies and a real case study on gesture data for motion tracking. Supplementary materials for this article are available online.
- Partitioned Active Learning for Heterogeneous SystemsLee, Cheolhei; Wang, Kaiwen; Wu, Jianguo; Cai, Wenjun; Yue, Xiaowei (ASME, 2023-08)Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time.